基于JSON RPC的一种Android跨进程调用解决方案了解一下?

codeGoogler / 文 发表于2018-06-11 09:18 次阅读 跨进程,android

简介

今天上午,看票圈有朋友分享爱奇艺的跨进程通信框架——Andromeda,觉的还是有点意思的。 以前项目中用到跨进程这种解决方案比较少,今天看了下Andromeda,发现调用方式很简单。

恰好最近一年都是在做后端工作,想到了Json RPC的方案,其实Android跨进程接也是一种rpc调用方式,那么参考json rpc协议,通过aidl通道也可以很简单一种跨进程通信方式,而且使用方式也很简单。

说干就干,但是作为了高级程序员,肯定要给项目起个名字高大上的名字——Bifrost(彩虹桥),参考复联电影雷神上面的彩虹桥,寓意可以传送到各地,也表达Android跨进程通信可以畅通无阻。

使用方式

在Android系统的跨进程调用需要用到AIDL方式,但是呢,操作起来非常麻烦,可以传递基本类型,如果需要自定义类,那么还需要实现Parcelable接口,同时也要写不少代码,操作起来繁琐。

像平常一样,先定义一个接口和实现类就行了。

public interface INumberApi {

    int add(int a, int b);
}
public class NumberApiImpl implements INumberApi {

    @Override
    public int add(int a, int b) {
        return a + b;
    }
}

注册下接口和实现类,因为暂时没有用到依赖注入工具,同时我也不想把功能做的很复杂,暂时手动注册吧,做注册前,先做好初始化工作。

Bifrost.getInstance().init(this);
Bifrost.getInstance().register(IUserApi.class, new UserApiImpl());
Bifrost.getInstance().register(INumberApi.class, NumberApiImpl.class);

Bifrost暂时支持2个注册方式,kv都是class类型,还有就是k是class,v是接口实现类的一个对象。

调用方式也很简单。

IUserApi userApi = Bifrost.getInstance().getRemoteInstance(IUserApi.class);
User user = userApi.login("admin", "123456");

Timber.i("user = %s", user);

INumberApi numberApi = Bifrost.getInstance().getRemoteInstance(INumberApi.class);
int ret = numberApi.add(1, 2);

Toast.makeText(getApplicationContext(), "1 + 2 = " + ret, Toast.LENGTH_LONG).show();

实现原理

原理很简单,见下图所示。

当在原始的进程中,定义一个接口,然后获取该对象的时候,其实返回值是一个用Java动态代理实现的一个值,当有使用方调用接口中的方法时候,会构造成一个RpcRequest对象,这个对象很简单,就是标识这个调用的必要信息。

public class RpcRequest {

    @SerializedName("jsonRpc")
    public String jsonRpc = "1.0";

    @SerializedName("id")
    public String id = UUID.randomUUID().toString();

    @SerializedName("clazz")
    public String clazz;

    @SerializedName("method")
    public String method;

    @SerializedName("params")
    public String params;

    @Override
    public String toString() {
        return "RpcRequest{" +
                "jsonRpc='" + jsonRpc + ''' +
                ", id='" + id + ''' +
                ", clazz='" + clazz + ''' +
                ", method='" + method + ''' +
                ", params='" + params + ''' +
                '}';
    }
}

比如上面的接口方法INumberApi.add,那么生成的最终的json信息如下。

{
  "clazz": "cn.mycommons.bifrost.demo.api.INumberApi",
  "id": "0af23e0d-03ab-4cb9-8f52-2c7f7e094023",
  "jsonRpc": "1.0",
  "method": "add",
  "params": "[1,2]"
}

然后这个对象又会转化成Req对象,这个对象是实现Parcelable接口的,用于2个进程之间通信。

public class Req implements Parcelable {

    private String uuid;

    private String payload;

    public Req() {
        uuid = UUID.randomUUID().toString();
    }

    public String getUuid() {
        return uuid;
    }

    public void setUuid(String uuid) {
        this.uuid = uuid;
    }

    public String getPayload() {
        return payload;
    }

    public void setPayload(String payload) {
        this.payload = payload;
    }

    public static Creator<Req> getCREATOR() {
        return CREATOR;
    }

    @Override
    public String toString() {
        return "Req{" +
                "uuid='" + uuid + ''' +
                ", payload='" + payload + ''' +
                '}';
    }

    protected Req(Parcel in) {
        uuid = in.readString();
        payload = in.readString();
    }

    public static final Creator<Req> CREATOR = new Creator<Req>() {
        @Override
        public Req createFromParcel(Parcel in) {
            return new Req(in);
        }

        @Override
        public Req[] newArray(int size) {
            return new Req[size];
        }
    };

    @Override
    public int describeContents() {
        return 0;
    }

    @Override
    public void writeToParcel(Parcel dest, int flags) {
        dest.writeString(uuid);
        dest.writeString(payload);
    }
}

上面的请求最终的信息变成了这样,这个不是json,是Java的toString方法返回的。

Req{uuid='f6a8028a-3cba-4abf-912b-ee7979923fb5', payload='{"clazz":"cn.mycommons.bifrost.demo.api.INumberApi","id":"0af23e0d-03ab-4cb9-8f52-2c7f7e094023","jsonRpc":"1.0","method":"add","params":"[1,2]"}'}

当另外一个进程获取到这些数据后,那么会做对应的反序列化,再次转化成Req,然后又可以得到RpcRequest。

当取到RpcRequest时候,可以根据里面的信息,获取当前调用接口的实现类,然后利用反射完成调用操作,得到结果后再次把结果转成json。

public class BifrostAidlImpl extends BifrostAidl.Stub {

    private Gson gson = new Gson();

    @Override
    public Resp exec(Req req) throws RemoteException {
        Timber.i("%s-->exec", this);
        Timber.i("req = %s", req);
        String data = req.getPayload();

        RpcRequest rpcRequest = gson.fromJson(data, RpcRequest.class);
        Timber.i("rpcRequest = %s", rpcRequest);

        try {
            Class<?> clazz = Class.forName(rpcRequest.clazz);
            Method method = null;
            for (Method m : clazz.getMethods()) {
                if (m.getName().equals(rpcRequest.method)) {
                    method = m;
                    break;
                }
            }
            if (method != null) {
                Class<?>[] types = method.getParameterTypes();
                List<Object> args = new ArrayList<>();
                if (!TextUtils.isEmpty(rpcRequest.params)) {
                    JSONArray array = new JSONArray(rpcRequest.params);
                    for (int i = 0; i < array.length(); i++) {
                        String o = array.getString(i);
                        args.add(gson.fromJson(o, types[i]));
                    }
                }
                Object instance = Bifrost.getInstance().getInstance(clazz);
                Timber.i("instance = %s", instance);
                Timber.i("method = %s", method);
                Timber.i("types = %s", Arrays.toString(types));
                Timber.i("params = %s", args);
                Object result = method.invoke(instance, args.toArray(new Object[0]));
                Timber.i("result = %s", result);

                return RespUtil.success(req.getUuid(), rpcRequest.id, result);
            }
            throw new RuntimeException("method " + rpcRequest.method + " cant not find");
        } catch (Exception e) {
            Timber.e(e);
            // e.printStackTrace();
            return RespUtil.fail(req.getUuid(), rpcRequest.id, e);
        }
    }
}

json也会转成Resp,返回到原始的进程。然后解析数据,当做函数返回值。

总结

总体来说,这个流程还是蛮清晰的,就是利用一个aidl通道,然后自己定义调用协议,我这边参考了JSON RPC协议。当然了也可以参考其他的,这里不再表述。

整理下优缺点吧:

优点

  • 使用和调用简单,无上手压力

  • 无需实现Parcelable接口,代码简洁

缺点

  • 因为涉及到json转换,所以需要依赖gson

  • 调用过程中含有多次json序列化与反序列化,有反射操作,可能会有性能影响

  • 接口方法中的参数和返回值必须要是基本的类型,支持josn序列化和反序列化,但原始的AIDL方式基本上也是一样,所以这条可以接受

后续安排

暂时只是实现简单的Demo,只是验证这个思路是否可行,后续会做些优化操作,如有朋友有兴趣,可以一起参与,本人联系方式 xiaqiulei@126.com

  • 支持异步操作,支持回调函数,可参考Retroft调用方式,可支持RxJava操作

  • 被调用进程支持线程池,增加并发量

  • 单独的日志操作,不依赖Timber

  • 支持同进程和夸进程调用

  • 支持事件的通知、发送,可参考BroadcastReceiver,EventBus等。

更多

2017上半年技术文章集合—184篇文章分类汇总

除了敲代码,你还有什么副业吗?

如果你觉得此文对您有所帮助,欢迎随时撩我 。微信公众号:终端研发部

技术+职场

收藏 赞 (0) 踩 (0)